Second Sight

Programmer's Library Documentation
July 14, 1995

Basic and Introductory Concepts

Palette

typedef struct RGB {
byter;
byte g;
byte b;

} RGB;

Palette entries consist of three bytes - one byte each of value for Red, Green,
and Blue. Unlike many PC VGA cards which only use 6 bits of each color vector,
the Second Sight supports a full palette range of 16.7M colors; i.e., each R G or
B value is 256 levels.

Palette data is required in Second Sight's 256 color modes, as well as in its text
modes (which only use the first 16 palette entries). The HighColor and

TrueColor modes of the card do not use palettes, because they directly store
RGRB color information in each pixel.

Image and Pixel Buffers

typedef struct LocInfo2

Word portSCB; /* 85A5A to indicate a LocInfo2 record */
union {
struct {
Pointer ptrToPixImage; /*these fields are the same as the */
Word width; /* the regular Loc!nfo record */
Rect BoundsRect;
} 1ii;
struct
Byte flags; /* 1 = VGA buffer, 0 = GS Mem buffer */
Pointer ptrToPixImage; /*offsetin VGA memory, or lIIGS address */
Word width; /* width of pixel map in pixels ¥/
Byte pixDepth; /* number of bits per pixsl */
Rect BoundsRect;
} 1iz;
} info;

}i

The Locinfo2 record is a backwards-compatible extension of the original
QuickDraw Locinfo record. It specifies the information necessary to locate the
memory address and mask of an arbitrary pixel in a pixel map, either in VGA
memory or GS memory. The equation to locate the address of a pixel, assuming
a pixel depth of 8, 16, or 24 bits, is:

address = (Y * width) + (X * {(pixDepth / 8)) + ptrToPixImage;

Library Routines

The library routines described below are implemented as a C-accessible
library. They should be accessible from any language that can operate with the
ORCA™ development system.

The actual implementation of the routines is undefined. Currently it is a simple
library, but in the future the core routines may be implemented as an IPC
process (which would provide the most flexible and quickest method of
accessing these routines such that the code is shared - a necessity in
multitasking systems).

int wvgaStartup(veoid)

Returns -1 if no Second Sight card is found, or if the Second Sight library
is not found via IPC.

Returns 0 if the card is found, and the library is properly initialized

vgastartup does a number of things. First, it checks to see if a Second Sight
card is installed in the computer. If no card is found, an error is returned.

Second, the routine tries to locate the core Second Sighf library; this is
generally an INIT file which contains IPC "hooks". If this code is not found, an
error is returned.

This call must be made before any other calls in this document.

int vgal.astError{veoid}

Returns the iast error code found by the VGA library. See the section on each
library call for a list of possible errors.

int vgaCopyPixelMap({int x,int y,LocInfe2 *loc,Rect *mapRect)

Xy x & y coordinate on VGA screen to place pixelmap

loc pointer to a Locinfo2 record specifying the attributes of the
source pixel map.

mapRect pointer to a Rect structure describing the portion of the

source pixelmap to copy.

This function copies a portion of a color pixelmap (the pixel depth is specified in
the Locinfo2 record) to the VGA display. No clipping is performed other than
insuring that no data is copied outside of the VGA memory specified by the
global VGA Loclinfoll record.

The pixel depths of the two bitmaps must be the same, and pixels may only be
copied on at least a one-byte boundary. See the function vgaPterMapToPort
for a function which will color-expand .

int vgaSetMasterLocInfo(LecInfo2 *licc)

This function sets the master VGA Locinfo record. This record defines the
characteristics of the video display, such as height, width, pixel depth, etc.

int vgaSetMode (int wvgaMode, int shadowFlag)

vgaMode A VGA Mode number. See the Table below for details.

shadowFlag Controls the Second Sight's automatic shadowing of Apple
Il video modes. True (1) turns shadowing off, False (0) turns
shadowing back on. f an application is going to draw
directly to the screen, it must turn shadowing off.

Possible Errors:

vgalNVALID_MODE_NUM 0x01
An invalid video mode number was passed to vgaSetMode.
The mode number given does not correspond to any
supported video mode.

vgaUNSUPPORTED_MODE 0x02
The specified video mode is not supported by the monitor
currently attached to the Second Sight. This could also
mean that a > 256 color mode was selected, but the DAC is
not capable of High Color or True Color.

int vgaSetPalette{RGB palette{], int startInd, imt numEntries)

Sets numEntries entries of palette data, starting at entry start1nd on the Second
Sight card to the values specified in the pointer palette.

int vgaSetPaletteEntry (RGB *palEntry, int colorInd)

Sets a single palette entry specified by colorind to the RGB values stored at the
palEntry pointer.

int vgalockPaletteRange (int startInd, int endInd, word userlD)
int wvgaUnlockPaletteRange{int startInd, int endiInd, word useriID)
int vgaFindAndLockPaletteRange{int numEntries)

Allocates a range of palette entries for the exclusive use of the calling
application. This allows an application to set aside a certain number of colors
for its own use, assured that its use of that entry won't interfere with other
applications' colors or vice-versa. :

int wvgaMapColor{(RGB *color);

Looks through the existing palette for the closest match to the specified color,
and returns the index of that color. This routine may not return an index to a

color anything at all like the specified one. If an application does not lock its

colors, it may want to periodically redraw its windows after remapping colors

with vgaMapColor.

int wvgaUploadVideoData{void *dest_adr, LongWeord size, woid *gs_adr)

Similar to the _UploadData function in the low level library. However,
vgaUploadVideoData only transfers data to video memory. Further, it knows
how to deal with the 512K boundary. Use this function to seamlessly transfer
data from the GS to video memory without worrying about splitting up your
transfers - this routine does it for you.

dest_adr is of course the destination offset in VGA video memory. size is the
number of bytes to transfer, and gs_adr is the address in GS memory of the
beginning of the block to transfer.

File Formats

We highly recommend that only _one__ set of routines to read/write this file
format be created: modules for Seven Hills' “Babelfish” product. '

The requirements for an image file format for Second Sight are as follows:
. Must be able to handle images of varying pixel depths

° Should be somewhat compatible with existing software, to provide
a "bridge" for users who do not yet have Second Sight.

e Should be guick to load and save.

To this end, we have chosen an extension to the APF (Apple Peferred Format).
We have defined three new chunk types, "SVGA" to denote an 8bpp (or higher)
image, "SVGC" to denote a PackBytes-compressed 8bpp image, and "SVGP*,

to denote an 8bpp palette.

SVGA
Word pixDepth; /* number of bits per pixel in this image */
Word widthPixels; /* number of pixels wide this image is */
Word heightPixels; /" number of pixels tall this image is */
byte image{widthPixels*heightPixels* (pixDepth/8)];
/ *
SVGC
Word pixDepth; /" number of bits per pixel in this image - always 8*/
Word widthPixels; /" number of pixels wide this image is */
Word heightPixels; /* number of pixels tall this image is */
..scanline data.. /* each scanline in turn, run through PackBytes */
SVGP
Word numEntries; /* number of palette entries */
RGB palette[numEntries]; " palette data in the form of 'RGB' struct */

To aid in compatibility of new pictures with existing applications, a grayscale
version of the VGA image should be stored in the standard MAIN and PALETTE
chunks of the file. Grayscale was chosen because of ease of conversion of any
format picture to grayscale in 16-colors; if the application wishes to do a
complicated quantization technique to choose colors for this "compatibility”
image, it may do so, but this is not required.

Compression is-not specified for 16bpp and 24bpp images, because the only
decent existing standard for compression of TrueColor and HighColor images is
JPEG - an algorithm that is extremely time-consuming to execute on a IIGS.
However, we expect that JPEG will come into more common use on the IIGS
due to SecondSight's TrueColor and HighColor capabilities.

Appendix A: VGA Video Modes

Text Mode # Colors 4" Mode Number Apple RGB Compatible?
40x25 16 501 Yes '
80x25 16 $03 Yes
80x43 16 No
80x50 16 No
80x60 16 No
132x25 16 $50 Yes
132x43 16 $51 " No
132x60 16 $4F No
Graphics Mode # Colors Mode Number
X 320x200 256 $13 Yes
—~320x200 32K $70 ~ Yes
320x200 16M
xX'640x400 256 $61 Yes (interlace)
— 640x400 32K $5B Yes (interlace)
640x400 16M
640x480 256 $s3 No
— 540x480 32K $5A No
640x480 16M $5F No
800x600 256 $14 No
800x600 32K $60 No
1024768 256 . $59 No
Emulation Mode # Colors Mode Number
560x192 16 SFA Yes
280x192 16 $FB Yes
40x24 16 $FC Yes
80x24 16 $FD Yes:
640x200 256 $FE Yes

X256 256 colors using a 256 entry palette

x32K 65536 direct colors, using 6 bits for Green, and § each for Red and
Blue, _or_ 32768 colors direct using 5 bits each for R, G, B.

x16M 16.7Million direct colors, using 8 bits each for Red, Green, and Biue

This list is not.to be construed as a list of video modes that any particular
application or any particular version of the C VGA library suports.

